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This paper describes the use of high-spatial-resolution ASTER data to determine

the accuracy of the moderate-resolution MODIS active fire product. Our main

objective was to develop a methodology to use ASTER data for quantitative

evaluation of the MODIS active fire product and to apply it to fires in southern

Africa during the 2001 burning season. We utilize 18 ASTER scenes distributed

throughout the Southern Africa region covering the time period 5 August 2001 to

6 October 2001. The MODIS fire product is characterized through the use of

logistic regression models to establish a relationship between the binary MODIS

‘fire’/‘no fire’ product and summary statistics derived from ASTER data over the

coincident MODIS pixel. Probabilities of detection are determined as a function

of the total number of ASTER fires and Moran’s I, a measure of the spatial

heterogeneity of fires within the MODIS pixel. The statistical analysis is done for

versions 3 and 4 of the MODIS fire-detection algorithm. It is shown that the

algorithm changes have a positive effect on the fire-product accuracy.

1. Introduction

The objective of the Southern Africa Fire and Atmosphere Research Initiative

(SAFARI) is to investigate the Earth–atmosphere–human interaction through an

extensive field campaign, including ground-, air- and space-based observations of

various biogeophysical and biogeochemical processes (Swap et al. 1998). Among

these processes is the emission of gases and particulate matter into the atmosphere

by natural and agricultural biomass burning. A critical part in the process of

understanding the influence of fire on the atmosphere is to have accurate and

reliable information on the timing of fires and their location.

The most practical way of obtaining large-scale maps of fire occurrences is to use

moderate- to high-resolution radiometers on board satellites (Justice and Korontzi

2001). For a long period, the Advanced Very High Resolution Radiometer

(AVHRR) on board the polar orbiter NOAA satellites was the only instrument that

provided observations of the spatial distribution of fire hot spots on a global scale

with relatively high temporal frequency. Additional instruments on board other

platforms began to be exploited for fire monitoring in the following decade,

including the Geostationary Orbiting Environmental Satellite (GOES), Visible

Infrared Spin Scan Radiometer Atmospheric Sounder (VAS) (Prins and Menzel
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1992), the GOES Imager (Menzel and Prins 1996), the Defense Meteorological

Satellite Program (DMSP), Operational Linescan System (OLS) (Elvidge and Baugh

1996), the Along Track Scanning Radiometer (ATSR) (Arino and Rosaz 1999), the

Tropical Rainfall Measuring Mission (TRMM) and the Visible and Infrared Scanner

(VIRS) (Giglio et al. 2000). However, these instruments’ characteristics are not

optimal for fire detection. Nevertheless, AVHRR data have been successfully used for

mapping fires during the SAFARI 1992 campaign, using a multi-spectral and

contextual algorithm appropriately tuned for local conditions (Justice et al. 1996).

The Moderate Resolution Imaging Spectroradiometer (MODIS; Kaufman et al.

1998) is a 36-band instrument with substantially improved capabilities for fire

mapping as compared with the AVHRR. The first MODIS sensor is onboard the

Terra satellite, which was launched in December of 1999 and has a daytime local

overpass of about 10.30 a.m. The second MODIS sensor is onboard the Aqua

satellite, launched in May 2002, with a 1.30 p.m. daytime overpass. One of the land

products derived from the MODIS sensor is a pixel-resolution fire mask, separated

into files representing 5 min of image acquisition along a given swath (Justice et al.

2002a). The increased saturation temperatures of the 1 km resolution 3.9 mm and

11 mm sensors decrease the ambiguities leading to false alarms or omission errors

typical of the AVHRR-based fire products (Giglio et al. 2003). The first MODIS

sensor is onboard the Terra satellite, launched in December of 1999, and has a

daytime local overpass of about 10.30 a.m. The second MODIS sensor is onboard

the Aqua satellite, launched in May 2002, and has a 1.30 p.m. daytime overpass. The

main objective of this paper is to develop a methodology to use ASTER data for

quantitative evaluation of the MODIS active fire product and to apply it to fires in

Southern Africa during the 2001 burning season, concentrating only on imagery

from the daytime overpass.

The Advanced Spaceborne Thermal Emission and Reflection Radiometer

(ASTER) (Yamaguchi et al. 1998), also onboard the Terra satellite, provides

near-nadir view measurements in four visible and near-infrared bands between 0.52

and 0.86 mm, six shortwave infrared (SWIR) bands between 1.6 and 2.43 mm, and

five thermal infrared (TIR) bands between 8.125 and 11.65 mm at 15, 30 and 90 m

resolutions, respectively. The coincident high-resolution, multi-spectral measure-

ments within a ,60 km swath near the centre of the MODIS swath provide a unique

opportunity to analyse the fine-scale features within the MODIS pixels, such as

active fires.

Figure 1 is an ASTER band 9 (2.4 mm) grey-scale image of a large fire complex in

Namibia. Overlain are the MODIS 1 km footprints, with white boxes denoting

pixels flagged as fires by the MODIS version 3 fire product. The superior

representation of the fine-scale details of the fire by ASTER is obvious. Omission

and commission errors from MODIS are also visible. For example, the MODIS

algorithm failed to detect distinct fire fronts within pixels, particularly in the upper

part of the image. Also, some pixels with no fire signal from ASTER were flagged by

the MODIS algorithm as containing fire. These commission and omission errors

underline the limitations of the MODIS fire algorithm and the need for

quantification of its accuracy.

The input data for this study are presented in section 2. In section 3, a procedure

to create binary ASTER fire masks within the MODIS footprints and a method

for their statistical comparison with the MODIS product are described. Results

of the analysis are presented in section 4 for both versions 3 and 4 of the MODIS
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fire-detection algorithm. The statistical analysis is followed by a discussion of the

results in section 5.

2. Materials

2.1 MODIS fire products

Although 8-day composites of the MODIS fire products exist (Justice et al. 2002a),
validation using temporally coincident observations (as in the present work) is most

straightforward with the swath-based daily fire product, referred to as the MODIS

Figure 1. ASTER 2.4 mm (band 9) image of a large fire complex from 17 August 2001 9:08
UTC, centred at 18.8uS 19.9uE. The gridded overlay denotes the nominal footprints of the
MODIS pixels. The white boxes represent MODIS-detected fire pixels from the version 3
algorithm.
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Level 2 product. This product, which is used to produce all higher-level fire

products, is defined in the MODIS orbit/viewing geometry, and contains active fire

information for a 5 min segment of the orbital swath. Specifically, the Level 2 fire

product contains multiple image layers and an extensive table of information about

individual fire pixels. Of relevance to this study is the active fire mask, in which fires

and other pixel classes of interest, such as cloud, are identified.

In response to algorithm and instrument problems, successive versions of the

Level 2 fire product have been generated since acquisition of MODIS data began in

early 2000. We utilized the current Level 2 MODIS fire product, version 4, which is

available from the Land Processes Distributed Active Archive Center (LP DAAC)

(http://lpdaac.usgs.gov/), as well as the older version 3 MODIS fire product. The

version 4 algorithm was developed in response to persistent problems that were

observed in the version 3 product, including persistent false alarms in sparsely

vegetated regions, and an inability to detect small yet obvious fires (Justice et al.

2002a, Giglio et al. 2003). Consideration of both versions provided a quantitative

assessment of the improvements incorporated into the version 4 fire algorithm. The

version 4 algorithm has been used for production since the inception of the

‘Collection 4’ reprocessing in late 2002, at which time improvements to sensor

calibration and geolocation were also incorporated into the processing stream.

The MODIS Level 1A 1 km 5 min swath geolocation product, coincident with the

MODIS Level 2 fire-product data, was used to obtain the location of individual

pixels within the Level 2 fire product. The geolocation accuracy from the MODIS

operational preprocessing is a fraction of a pixel (Wolfe et al. 2002) as compared

with three or four pixels for the AVHRR.

2.2 ASTER data

In this paper, we derived high-resolution binary ‘fire’/‘no fire’ maps from ASTER

data for 18 ASTER scenes falling within 11 MODIS granules (table 1; Morisette

et al. 2003). In addition to this dataset, several other representative cases were used

for demonstration and statistical model evaluation purposes (such as that in

figure 1). The data are spread across various ecosystems in the Southern African

region from dry grassland in the Kalahari region to savannah towards the North

(figure 2). All data are from the morning/daytime overpass of the Terra Satellite.

The ASTER scenes were version 2 ‘ASTER L1B registered radiance at the sensor’

products acquired from LP-DAAC. The digital count values were converted into

radiances using the unit conversion coefficients provided within the L1B files. Since

this analysis, version 3 of the same product has also become available. However, a

comparison of sample version 2 and version 3 data revealed no differences in the

information extracted from that imagery for this study. Therefore, we deemed that

repeating the analysis with version 3 ASTER data was unnecessary.

3. Methods

3.1 Independently derived ASTER high-resolution fire maps

3.1.1 ASTER band selection. ASTER does not have a band corresponding to the

MODIS 3.9 mm ‘fire’ bands, which are highly sensitive to thermal emissions at usual

fire temperatures. However, with the high spatial resolution of the ASTER sensor,

even a relatively small fire can cover a considerable fraction of the ASTER pixel.

With this, the relative contribution of the increased thermal emission from fires, as
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Table 1. Parameters of the ASTER and MODIS files used to derive the statistical models of MODIS fire-detection probability.

Scene ASTER filename Date Latitude (u) Longitude (u)
Coincident MODIS

granule ID

1 pg-PR1B0000-2001081702_091_001 5 August 214.04 27.53 MODxx.A2001217.0840.vvv.*.hdf
2 pg-PR1B0000-2001081702_095_001 5 August 219.39 26.36 MODxx.A2001217.0840.vvv.*.hdf
3 pg-PR1B0000-2001091402_112_001 1 September 212.69 30.48 MODxx.A2001244.0820.vvv.*.hdf
4 pg-PR1B0000-2001091402_031_001 1 September 216.96 29.52 MODxx.A2001244.0820.vvv.*.hdf
5 pg-PR1B0000-2001091602_042_001 4 September 212.98 24.73 MODxx.A2001247.0850.vvv.*.hdf
6 pg-PR1B0000-2001091602_045_001 4 September 215.65 24.15 MODxx.A2001247.0850.vvv.*.hdf
7 pg-PR1B0000-2001092202_069_001 9 September 214.98 18.69 MODxx.A2001252.0910.vvv.*.hdf
8 pg-PR1B0000-2001092202_001_001 9 September 222.46 16.98 MODxx.A2001252.0910.vvv.*.hdf
9 pg-PR1B0000-2001100702_081_001 18 September 218.19 44.26 MODxx.A2001261.0725.vvv.*.hdf
10 pg-PR1B0000-2001101102_017_001 23 September 212.33 16.31 MODxx.A2001266.0920.vvv.*.hdf
11 pg-PR1B0000-2001101302_111_001 28 September 217.17 35.56 MODxx.A2001271.0800.vvv.*.hdf
12 pg-PR1B0000-2001101302_275_001 28 September 213.96 36.26 MODxx.A2001271.0800.vvv.*.hdf
13 pg-PR1B0000-2001101502_039_001 29 September 213.24 24.27 MODxx.A2001272.0845.vvv.*.hdf
14 pg-PR1B0000-2001101502_050_001 29 September 222.31 22.15 MODxx.A2001272.0845.vvv.*.hdf
15 pg-PR1B0000-2001101603_130_001 1 October 211.29 29.14 MODxx.A2001274.0830.vvv.*.hdf
16 pg-PR1B0000-2001101603_155_001 2 October 212.32 17.78 MODxx.A2001275.0915.vvv.*.hdf
17 pg-PR1B0000-2001101603_017_001 2 October 213.92 17.43 MODxx.A2001275.0915.vvv.*.hdf
18 pg-PR1B0000-2001102002_118_001 5 October 226.83 32.13 MODxx.A2001278.0810.vvv.*.hdf

Multiple MODIS files were used. The table lists the common elements for all MODIS filenames. In the actual filenames, ‘xx’ is either 03 for geolocation files
or 14 for fire products files, ‘vvv’ is the version number (003 for MOD03, 003 and 004 for MOD14), and ‘*’ is the processing date and time.
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compared with the background, is substantial enough to produce a distinct fire

signal in both the SWIR and TIR bands.

The SWIR subsystem of ASTER has four gains: high, normal, low-1 and low-2.

All the scenes used in this study have SWIR data acquired at normal gain, which is

the default operating mode. At normal gain, high-temperature targets often cause

the digital count from the sensor to reach the saturation value of 255 (Justice et al.

2002a), corresponding to brightness temperatures of 892 K at band 4 (1.65 mm),

695 K at band 5 (2.17 mm), 681 K at band 6 (2.21 mm), 681 K at band 7 (2.26 mm),

636 K at band 8 (2.33 mm) and 610 K at band 9 (2.40 mm). However, in the SWIR

region, the integrated radiance detected by the sensor is the sum of reflected solar

radiation and emitted thermal radiation. According to theory, the relative contri-

bution of the reflected solar radiation in the SWIR region decreases with increasing

wavelength. Thus, band 9, even though it saturates at a lower temperature, allows

the best separation between fires and any background signals among the ASTER

SWIR bands.

In the TIR region, which lacks appreciable reflected solar radiation, the success of

detecting fire hotspots depends on the relative contribution of emitted radiance from

the fire to the integrated emitted signal, including the fire-free background. In the

coarser-resolution TIR bands, however, the fractional fire area is smaller than in the

SWIR bands. According to Planck’s law, at typical fire temperatures, the relative

sensitivity of radiance to temperature decreases with increasing wavelength, sug-

gesting the use of the TIR bands with the shortest wavelength. Note that the

ASTER TIR bands have only gains with a ,370 K saturation brightness

temperature.

Figure 3 shows ASTER band 9 (2.4 mm) and 10 (8.3 mm) images of part of the fire

complex shown in figure 1. Both grey-scale images are stretched in a similar fashion

from 0 to the saturation radiance value. Comparing the two images indicates that

band 9 distinguishes many more details of the fire front and detects smaller,

Figure 2. Spatial coverage of the ASTER scenes used to derive the statistical models of
MODIS fire-detection probability. The numbers indicate the file numbers in table 1.
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individual fires as well (note also the increased thermal signal in band 10 from the

recently burned areas). Based on theoretical considerations and multiple visual

comparisons, we decided to use only band 9 for the identification of active fires from

ASTER data.

3.1.2 Fire identification. Scrutiny of a number of ASTER band 9 images

established that the vast majority of obvious fire pixels have a radiance at or near

the saturation value of 8.04 W m22 sr21 mm21. However, bright clouds, bright or hot

land surfaces, and sun-glint can be mistaken as fires unless a careful analysis of the

data is done. Because of this, each of the individual ASTER scenes was visually

inspected. Sun-glint was found to be absent from all the ASTER scenes used in this

study because of the sun-surface-sensor geometry for our particular area and period

of interest.

Typical ASTER band 9 radiance values for clear surface, clouds, and fires are

illustrated in figure 4. The image on the left shows a highly reflective cloud near a

fire cluster. The histogram of the same image reveals two distinct humps,

representing cloud-free background land surface and the cloud. The flat part of

the histogram above 6.33 W m22 sr21 mm21 corresponds to bright cloudy pixels

(shown in red in the centre of the cloud in figure 4) and the non-saturated pixels in

the fire fronts at the bottom. A spike of the histogram at the radiance value of

8.04 W m22 sr21 mm21 is also visible. From the histogram, it can be seen that the

radiances corresponding to clear land surface remain under ,4 W m22 sr21 mm21,

and that most cloudy pixels remain under ,6 W m22 sr21 mm21. However, it is

obvious that there is some ambiguity between ,6 and ,8 W m22 sr21 mm21 in terms

of separating fire and bright cloudy pixels. Similarly, a few pixels clearly corres-

ponding to the fire fronts have radiance values slightly under 6.33 W m22 sr21 mm21,

associated with small fire fraction and/or lower temperatures from smouldering.

Overall, the radiance value of 6.33 W m22 sr21 mm21 (or digital count value of 200

for ASTER’s normal, default gain settings) is a reasonable compromise for the

lower threshold for fire identification from ASTER band 9. While there is an

obvious need for the development of an automated ASTER fire detection

algorithm—including cloud screening—for this study we used this simple empirical

Figure 3. ASTER 2.4 mm (band 9 (a)) and 8.3 mm (band 10 (b)) images of a fire.
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threshold to identify fires and then interactively eliminated any possible false signals.

The semi-automated procedure, coupled with visual inspection, ensured that the

derived binary ASTER fire product had the highest accuracy possible, given the

available information.

In addition to the potential false fire alarms discussed above, ASTER band 9 data

have also been found to exhibit three instrument-related artefacts that occur when a

strong impulse of radiation reaches the sensor: (1) the bright target is surrounded by

a circular ‘bloom’ of increased radiance values; (2) there is a distinct ‘spike’ of

increased radiance values in the cross-track direction originating from the bright

target; and (3) there are pixels with near-zero values at the edge or within the cluster

of saturated pixels. The artefacts listed can be seen in figure 1. The near-zero

radiances appear mostly to the left of fire fronts. The spikes and the blooms around

more intense parts of the complex are also clearly visible. Fortunately, the radiance

values within these areas are below ,6 W m22 sr21 mm21, and so they do not affect

our analysis. However, they would need to be considered in studies where the

quantitative characterization of pixels neighbouring the fire cluster is needed.

3.1.3 Creation of coincident ASTER binary fire masks. The procedure described

above yields binary ASTER fire masks with a 30 m spatial resolution. To compare

these with the 1 km MODIS fire masks, each ASTER pixel must be assigned to those

MODIS pixels in which they fall. This mapping of ASTER pixels to MODIS pixels

was performed using a nearest-neighbour search through all MODIS pixels

overlapping the region viewed within the particular ASTER scene. An example of

the result of this mapping procedure is shown in figure 1. Notable on that figure is

the slight horizontal shift and vertical overlap of the MODIS pixel pattern towards

the middle of the image, associated with the separate MODIS scans each producing

10 separate scan lines from 10 separate detectors.

Because of the along-scan triangular MODIS response at the surface (Kaufman

et al. 1998), there is a 50% along-scan overlap in the area observed by two adjacent

Figure 4. (a) Bright cloud in the vicinity of fires on an ASTER band 9 image taken on 1
October 2001 at 8:30 UTC, centred at 11.3u S and 29.1uE. The red overlay represents pixels
with band 9 radiance value above 6.33 W m22 sr21 mm21. (b) Histogram of the band 9
radiances from the same image.
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MODIS pixels. Consequently, a single ASTER pixel will fall within two MODIS

pixels, and a single fire can be detected twice. To account for the triangular response

effect in the statistical analysis, MODIS pixels were considered to be 2 km in the

along-scan direction and 1 km in the along-track directions (see figure 5). These

dimensions describe near-nadir MODIS pixels only, but are appropriate for

ASTER-based validation, since the ASTER pointing range is restricted to this

region. Using this ‘footprint’, individual ASTER fire sub-scenes were extracted for

each MODIS pixel.

The triangular response has implications for any validation study. Specifically,

fires near the along-scan edges of the 2-km-wide MODIS pixels will generally remain

undetected—through no fault of the detection algorithm—since their radiance will

be weighted very weakly. (Because of the 1 km overlap between MODIS pixels, a fire

in this region is likely to be detected, however, in the along-scan neighbouring pixel

which will have the same fire located near its centre.) One could compensate for this

instrument-induced artefact by weighting ASTER fire pixels based on their location

within the corresponding MODIS pixel, i.e. interpolate between a unit response at

the centre of the MODIS pixel and zero response at each along-scan edge. Since,

ultimately, we require validation of the fire product, the quality of which is

determined by the performance of both the detection algorithm and the instrument,

we have counted all ASTER fire pixels equally and not attempted to ‘factor out’ the

along-scan spatial response.

3.2 Summarizing ASTER data relative to MODIS pixels

Within a given MODIS pixel, there are many ways to summarize the corresponding

ASTER fire map. We were most interested in summaries related to the spatial extent

and distribution of fires. To get an idea of the spatial extent of fires, we simply sum

the number of ASTER fire pixels. To capture a one-number summary of the spatial

distribution of the fires, we calculated Moran’s I from the ASTER fire map for the

area representing each MODIS pixel. Moran’s I is used to detect spatial patterns

and testing for spatial autocorrelation (Haining 1990, section 6.2). In that Moran’s I

Figure 5. Diagram representing the ASTER fire map area summarized for each MODIS
pixel, taking into account the triangular response function of the MODIS sensor.
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can be used to detect spatial autocorrelation, we felt it would serve as a useful

summary statistic that could be associated with each MODIS pixel to relay

information about the spatial distribution of the fires. Moran’s I function applied to

the ASTER fire map for each MODIS pixel is:

Moran0s I~n

Pn

i~1

Pn

j~1

wi,j yi{mð Þ yj{m
� �

Pn

i~1

yi{mð Þ2
� �

SS
i=j

wij

� � , ð1Þ

where n is the number of ASTER pixels covered by a MODIS pixel after accounting

for triangular response; i and j index the ASTER pixels within the MODIS pixel; yi

represents the ASTER pixel’s value (either 0 or 1); wij is 1 for the eight pixels, yj, that

are adjacent to pixel yj and 0 for all others; and m is the mean of the ASTER fire map

for the area represented by the MODIS pixel. Moran’s I statistic summarizes spatial

correlation where values increasing from zero to one indicate an increasing spatial

correlation (adjacent pixels are more likely to be the same value). Theoretically,

values decreasing from zero indicate negative spatial correlation (adjacent pixels are

more likely to be different values). In practice, for the data analysed here, all

Moran’s I values are greater than or equal to zero, where Moran’s I equal to zero

represents a MODIS pixel area in which all ASTER pixels were zero. Summary

statistics similar to Moran’s I include Geary’s C as well as general cross-product

statistics (Haining 1990, section 6.2). These all relay similar information. To keep the

analysis as concise as possible, we consider only Moran’s I.

While Moran’s I was developed as a way to test the hypothesis of spatial auto-

correlation (Haining 1990), here it is used simply as a quantitative formula to

summarize ‘clumping’ of the ASTER fire pixels. The higher Moran’s I, the more

contiguous, or ‘clumped’, the ASTER fire pixels. Figure 6 demonstrates how

Moran’s I provides a one-number summary on the spatial distribution of fire. The

figure shows the ASTER fire maps corresponding to two MODIS pixels. Both areas

have 34 ASTER pixels classified as ‘fire’. However, the image on the left shows that

all the 34 fire pixels are contiguous, whereas the image on the right shows the 34 fire

pixels to be fairly well distributed throughout the MODIS pixel. This is relayed

through Moran’s I, which, for the image on the left, is nearly twice as much as the

image on the right.

In summary, for each MODIS pixel, we have the following: MODIS fire value of

either zero or one, the number of ASTER fire pixels, and an index of the spatial

distribution of the ASTER fires via Moran’s I.

Figure 6. Spatial distribution of ASTER fire pixels within MODIS footprints. (a) Moran’s
I 5 0.681, variance 5 0.0141; (b) Moran’s I 5 0.347, variance 5 0.0139.
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3.3 Statistical method for comparison

The comparison between MODIS and ASTER fire products addresses three major

questions:

1. What are the characteristics of fires that MODIS will almost always detect

(probability of detection . 0.95)?

2. What are the characteristics of fires that MODIS might detect (probability of

detection 5 0.50)?

3. What are the characteristics of fires that MODIS will likely miss (probability

of detection , 0.05)?

In order to address these questions in a quantitative manner, we employ statistical

models to relate the binary MODIS ‘fire’/‘no-fire’ product with summary statistics

from the ASTER fire map. MODIS data are taken to be the response (or ‘Y’)

variable and the summary statistics derived from the ASTER data as the

independent (or ‘X’) variable(s) within the context of logistic regression models.

We consider two models. The first model includes only the ASTER fire counts as an

explanatory variable:

p xið Þ~
eb0zb1xi

1zeb0zb1xi
, ð2Þ

where xi represents the count of ASTER fire pixels within MODIS pixel i, p(xi) is the

probability that MODIS pixel i will be equal to 1 (i.e. labelled as ‘fire’) given the

values of xi, and the b0 and b1 parameters are estimated from the data (Agresti

1990).

The second model includes also Moran’s I statistic as an explanatory variable:

p xi, mið Þ~ eb0zb1xizb2mi

1zeb0zb1xizb2mi
, ð3Þ

where, in the additional term, mi represents Moran’s I value for the ASTER fire

pixels within MODIS pixel i, and now three terms: b0, b1 and b2 are estimated from

the data. Significant differences between models 1 and 2 will indicate the significance

of including a measure of spatial continuity (i.e. Moran’s I). More specifically, the

significance of the b2 parameter indicates the importance of including Moran’s I in

the model.

In order to account for the variability observed between ASTER scenes, models 1

and 2 are further refined to separate the within-scene variability from the between-

scene variability. This is done using a mixed effect model (Pinheiro 2000) where

scene differences are treated as a ‘random effect’ associated with experimental units,

here the ASTER scenes. The mixed-effect versions of models 1 and 2 are:

p xij

� �
~

e b0zb0jð Þz b1zb1jð Þxij

1ze b0zb0jð Þz b1zb1jð Þxij

ð4Þ

p xij, mij

� �
~

e b0zb0jð Þz b1zb1jð Þxijz b2zb2jð Þmij

1ze b0zb0jð Þz b1zb1jð Þxijz b2zb2jð Þmij

: ð5Þ

As opposed to the fixed-effect parameters, the bis, which are associated with the

population, the random-effects parameters, the bis, are instead associated with
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experimental units drawn at random from the population. Although the random

effects, the bis, may behave like parameters, formally they are just another level of

random variation, and random-effects modelling is used to separate (and estimate) a

between-scene variability and within-scene variability (Pinheiro and Bates 2000).

The ASTER scenes used in this study were not selected with a true random

sample, they were selected arbitrarily from a list of ASTER scenes that covered the

area during the dry season. Thus, it seems appropriate to use the random effects

model to account for between-scene variation. Including the differences between

ASTER scenes as a random effect allows the model to incorporate the between-

scene differences without limiting the resulting model to explicitly include the

ASTER scenes identification. This allows the modelling to account for the difference

between the scenes in an attempt to obtain a more accurate estimate of the ‘fixed

effects’, or population parameters, the bis. The resulting population model is

equivalent in form to equations (2) and (3), but the bis are fitted with models from

equations (4) and (5), respectively.

The modelling is done with S-plus2 statistical software (Insightful Corporation,

Seattle, WA). The resulting models are then used to address the three questions

listed at the beginning of this section. We address the first question by evaluating the

model at the p(xi)50.05 level, the second by considering p(xi)5.5, and the third by

evaluating the models at p(xi)50.95. While these particular values for p(xi) are

somewhat arbitrary, the 0.05 and 0.95 values match probability levels typically

associated with statistical testing, while values associated with the second question

Figure 7. Scatter plot of ASTER fire counts and Moran’s I. #: MODIS fire pixels; &:
MODIS non-fire pixels.

4250 J. T. Morisette et al.



correspond to the mid-point where the probability of detection is as likely as non-

detection. Additionally, the actual models are given so that other values for p(xi) can

be explored.

A standard method for assessing the accuracy of remotely sensed data is through

the use of an error matrix. In the error matrix, the columns represent the reference

data, while the rows represent the classified data (Aronoff 1982a, b). In this context,

the ASTER imagery is the reference data, and the MODIS fire product is the

classified data. However, for such an analysis, the reference data should be collected

at the same minimum mapping unit as the map being assessed (Congalton and

Green 1999). The error matrix approach requires using the same classification

scheme for both the reference data and classified map. These two issues imply that

we would need to consider all the ASTER data contained within a MODIS pixel and

reduce it to a binary classification of either fire or non-fire. This, in turn, would

require developing a method for such a classification, such as selecting a threshold

for the number of ASTER fire counts beyond which we would classify the ASTER

data within the MODIS pixel as ‘fire’. Such a classification would involve a

subjective selection of a threshold value and result in a serious reduction of the

amount of ASTER information available within each MODIS pixel. With this, we

utilize generalized linear modelling instead of the error matrix approach (Morisette

and Khorram 2000).

Figure 7. (Continued).
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4. Results

ASTER fire counts and Moran’s I values for each MODIS pixel broken down scene

by scene are shown in figure 7. It is worth noting that the majority of the data are

from areas with no fire. That is, the closed squares at ASTER fire counts50 and

Moran’s I50 represent many pixels. However, as the data points are legitimate

observations (Tappin 1994) representing the relationship between the MODIS and

ASTER data, initially all data points are included in the model.

The plots reveal several features of the data. First, the MODIS fire pixels tend to

fall in the region with high ASTER fire counts and high Moran’s I values. We also

see several points where a fire pixel and a non-fire pixel overlap (a square within a

circle). These represent areas where the fire fell near an along-scan edge of the

MODIS pixel, thus falling in the region observed by two adjacent MODIS pixels

due to the along-scan triangular response (see section 3.2). There is considerable

variability between scenes, with one scene having no MODIS fire pixels (scene 2)

and another containing 43 MODIS fire pixels. The sizes of fires within a scene also

vary. For example, scene 6 has only one MODIS fire pixel, and the ASTER fire

counts for that pixel are 15 while several pixels in scene 12 and 15 have ASTER fire

counts above 200. This between-scene variability indicates that the data set captures

much of the natural variability. It also indicates the need to utilize the random-

effects models.

To make general statements about the MODIS product, we move directly to

results from analysis on the combined data from all scenes. This represents 66 761

MODIS pixels, of which 221 were flagged as ‘fire’ by the MODIS version 4 code.

Figure 8. Estimated probabilities from model 1, using the MODIS version 4 algorithm.
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Starting with model 1, we plot the data and the modelled relationship on figure 8.

(Note, for the plot, a small random error has been added to MODIS values so as to

better display overlapping points. The x axis is scaled to highlight the interesting

portion of the model, and some points with higher ASTER fire counts and MODIS

values of one are not shown on the graph.) The estimated parameters for the model

are given in table 2, which also lists the residual deviance and degrees of freedom

(Insightful 1999). The random-effects model parameters are given in table 2 and

shown as the solid line in figure 8.

Table 2. Estimated model parameters from the various models.

Residual
deviance

Degrees of
freedom

Algorithm: Version 3 b0, b1

Model 1 27.305 0.154 873 66 759
Model 1 with random effects 27.305 0.154 873 66 758
Algorithm: Version 4 b0, b1

Model 1 27.006 0.207 1131 66 759
Model 1 with random effects 27.577 0.308 884 66 758
Algorithm: Version 3 b0, b1 b2

Model 2 28.196 0.048 9.818 665 66 758
Model 2 with random effects 28.221 0.054 9.320 635 66 757
Algorithm: Version 4 b0, b1 b2

Model 2 27.687 0.064 9.760 907 66 758
Model 2 with random effects 27.762 0.113 8.528 821 66 757

Excluding data where ASTER fire
counts50
Algorithm: Version 3 b0, b1

Model 1 23.554 0.070 486 1078
Model 1 with random effects 23.588 0.071 469 1077
Algorithm: Version 4 b0, b1

Model 1 23.330 0.094 568 1078
Model 1 with random effects 23.828 0.137 478 1077
Algorithm: Version 3 b0, b1 b2

Model 2 24.901 0.052 3.787 440 1077
Model 2 with random effects 24.833 0.060 3.061 414 1076
Algorithm: Version 4 b0, b1 b2

Model 2 24.879 0.049 3.939 465 1077
Model 2 with random effects 24.481 0.109 2.502 484 1076

Table 3. ASTER fire count cut-off levels corresponding to probability levels at which
MODIS will classify a pixel as ‘fire’ based on model 1.

Model

Probablity level

0.05 0.25 0.5 0.75 0.95

Version 3 algorithm
No random effects 39.20 44.41 47.51 50.62 55.83
With mixed effects 39.20 44.41 47.51 50.62 55.83

Version 4 algorithm
No random effects 27.70 31.58 33.89 36.20 40.07
With mixed effects 20.44 23.04 24.59 26.14 28.74
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From the models, we can assign probability levels where the MODIS product will

classify the pixel as fire for a given number of ASTER fire counts (table 3). For

example, using the mixed-effects model, there is a 5% chance MODIS will classify a

pixel as fire when the ASTER fire counts are roughly 20 pixels. Alternatively, there

is a 95% chance MODIS will classify a pixel as fire when the ASTER fire counts

within the MODIS pixel are over 30.

Points in the lower right of figure 8 represent ommision errors where a given point

corresponds to many ASTER pixels classified as fire, yet the MODIS pixel was not

classified as fire. Points in the upper left represent commission errors where a given

point corresponds to few or no ASTER pixels classified as fire, yet the MODIS pixel

was classified as fire. One could construct an error matrix (Aronoff 1982a, b,

Congalton and Green 1999) by selecting a threshold along the ‘ASTER fire counts’

axis to divide the data into four groups of a 262 error matrix: MODIS50 (no fire) and

ASTER fire counts below the threshold, MODIS50 and ASTER fire counts above the

threshold, and two similar groups for MODIS51 (fire). However, as mentioned

earlier, the selection of the threshold is somewhat arbitrary and results in a reduction of

data. The point is mentioned here only to aid our interpretation of figure 8.

The same modelling was applied to the MODIS version 3 algorithm results

(figure 9). The mixed-effects models for the MODIS version 3 data yielded no

practical difference—they are so close that neither line is discernible on figure 9, and

the bI parameters are identical to three decimal places. This is mainly due to the fact

that for the version 3 data, the within-scene variability is large enough to make the

between-scene variability relatively insignificant. The resulting model parameters are

listed in table 2. Table 3 lists ASTER fire counts and corresponding probabilities for

the version 3 algorithm.

Both the fixed- and random-effects models show that the version 4 algorithm has

a better likelihood of detecting small fires. For a given probability of MODIS fire

Figure 9. Estimated probabilities from model 1, using the MODIS version 3 algorithm.
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detection, the number of ASTER fire pixels is lower for the version 4 data. Also, the

fitted curves are steeper for the version 4 data, thus indicating a quicker transition

between the number of ASTER fire counts where MODIS is unlikely to classify the

data as non-fire and those ASTER fire counts where MODIS is likely to classify the

data as fire. For example, the number of ASTER fire counts between the 25% and

75% percent probability measure is 4.6 and 3.1 for the version 4 standard and

mixed-effects models, respectively, while for the version 3 data, the difference in

ASTER fire counts between these same two probabilities is 6.2.

Moving on to models which consider both the number of ASTER fire counts as

well as the measure of fire contiguity as relayed through Moran’s I statistic, the data

shown in figure 7 are now shown on figure 10 over a grey-scale image representing

the estimated probabilities from model 2, using the standard fixed effects model and

data from the MODIS version 4 algorithm. The fitted parameters are given in

table 2.

By including the value of Moran’s I, we see that even for a very small number of

ASTER fire counts, when Moran’s I values are high (i.e the fires are contiguous),

there is a high likelihood that MODIS will classify the pixel as ‘fire’. The parameters

from the random effect version of model 2 are listed in table 2 and shown in

figure 11.

Parameters for model 2 applied to the version 3 algorithm are also given in table 2.

These models and the results from the modelling on version 4 data, along with the

data points, are shown in figure 12. Again, as in the one-dimensional case, model 2

indicates that the version 4 algorithm is more sensitive with respect to ASTER fire

counts and Moran’s I.

For all models, the bi parameters were statistically significant, with associated

‘p-values’ less than 0.001, and variograms of the residuals showed no spatial

Figure 10. Estimated probabilities from model 2 using the MODIS version 4 algorithm.
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autocorrlation within a scene. The residuals are plotted by scene to graphically

explore the need for the random-effects model. Figure 13 shows a plot of ‘deviance’

residuals (Insightful 1999) broken down by scene. A large deviance residual

corresponds to an observation that does not fit the model well in the same sense that

a large residual for a linear regression model does not fit well (Insightful 1999). For

logistic regression modelling in general, the residuals should be centred on zero and

show no systematic difference between scenes. The top row of figure 13 shows that

some scenes tend to have positive residuals, while some scenes tend to have negative

residuals, thus indicating that the ‘scene effects’ are incorporated in the residuals

(Pinheiro and Bates 2000). By accounting for differences between the scenes through

the random effects modelling, we see that the residuals behave more appropriately,

as seen in the bottom row of figure 13, thus indicating the random effects model as

the more appropriate model for this data set. The random-effects models also result

in a lower overall residual deviance for both model 1 and 2, for version 4 data and

model 2 for version 3 data.

Figure 14 provides an example of the improved detection capability of version 4 of

the MODIS fire-detection algorithm. The images show a fire front moving along a

dry, grassy ‘dambo’ riverbed in Zambia. The fire is along the border between two

adjacent MODIS footprints, and thus the relative contribution to either is small.

The total number of ASTER fires was 23, and Moran’s I value was 0.585 (because of

the overlapping MODIS footprint on the ASTER fire masks—and because there are

no other fires in the two MODIS pixels—the ASTER summary numbers are the

same for both MODIS pixels). Using the fitted random-effects models for this case,

the probability of detection for version 3 is ,0.18. Indeed, version 3 (figure 14(a))

did not detect this fire. Version 4 (figure 14(b)), however, with an estimated

Figure 11. Estimated probabilities from model 2 with random effects, using the MODIS
version 4 algorithm.
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probability of detection of ,0.46, classifies both MODIS pixels covering the fire

front as fire.

The analysis thus far has been based on all MODIS pixels covering the ASTER

scenes, including areas with no fire activity. Now, we present results focusing on

omission errors by removing points where both the MODIS classification and

ASTER fire counts are equal to zero (referred to as ‘zero-points’). Comparing these

results to the previous provides an opportunity to assess the influence of the large

number of zero-points. Results are given in table 2 and figures 15–17. The new

model runs yielded the same general relationship, and the associated parameters

were all significant with p-values ,.001. However, the specific parameter values are

different. Comparison of model 1 results (figure 8 vs. figure 15, and figure 9 vs.

figure 16) shows less steep curves for the new models, suggesting that the numerous

zero-point cases forced the original models to reach low detection probabilities for

higher ASTER fire count values; and, because of the symmetric nature of the model

function (Agresti 1990), to reach high detection probabilities for lower ASTER fire

Figure 12. Results from model 2 for version 3 and 4 algorithms and fixed and random
effects models.
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Figure 13. Residual plots for the fixed effects (top row) and random effects (bottom row)
for models 1 (left column) and Model 2 (right column).

(a) (b)

Figure 14. Heat signature from fire front working its way along a dry, grassy (‘dambo’)
riverbed in Western Zambia in an ASTER band 9 image from 12 August 2001, centred at
16.6u S 24.4uE. The nominal 1 km MODIS pixel edges are indicated by the black grid lines.
Fire pixels detected by the MODIS algorithm are outlined in white.
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Figure 15. Estimated probabilities from model 1, using the MODIS version 4 algorithm
excluding points where both MODIS classification and ASTER counts50.

Figure 16. Estimated probabilities from model 1, using the MODIS version 3 algorithm
excluding points where both MODIS classification and ASTER counts50.

SAFARI 2000 4259



counts. This effect appears to have counteracted the effect of the (ASTER count50;

and MODIS fire5‘yes’) cases (i.e. false MODIS alarms) that were also included in

the original analysis. When all the data are included, the large number of zero-points

overshadow the few false-alarm pixels.

The more ‘stretched out’ nature of the ASTER count–detection probability

dependence for the new models is also visible in the plots showing the model 2

results (figure 13 vs. figure 17). This comparison also shows less dependence of the

detection probability on Moran’s I for the new models. This is probably due to the

fact that the numerous zero-point cases leverage the contour lines towards (negative)

45u.

5. Conclusion/discussion

The questions listed at the start of section 3.3 can be addressed by considering the

three lines shown on figures 13 and 17. The three lines given for each model divide

Figure 17. Results from model 1 and model 2 for version 3 and 4 algorithms and fixed- and
random-effects models, using only data points where ASTER fire counts were greater than
zero.
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the two-dimensional space of ASTER fire counts and Moran’s I into areas

corresponding to the three questions. The space to left of the p(xi)50.05 line

corresponds to the first question; the space to the right of the p(xi)50.95 line

corresponds to the third question; and the space between these two corresponds to

the second question.

The modelling done in any statistical analysis involves a choice of which model to

use. Resulting parameters and diagnostics are used to assess that choice, but some

subjective decision is still involved. That is why here we have presented both the

fixed-effects and random-effects models as well as data with and without points

where both the MODIS classification and ASTER fire counts were equal to zero.

We believe that the random-effects model, by accounting for the variability between

ASTER scenes, provided the proper framework to describe these data and is the

most relevant to the typical user interested in the MODIS fire product’s behaviour

over Southern Africa. Providing separate models that include and exclude points

where ASTER fire counts are equal to zero provides the user with an envelope

between models with the most liberal use of the data (the model including zero-

points) and the most conservative (the model that disregards those points).

Regardless of the mathematical formulation of the logistic regression model or if the

analysis includes the zero-points, it is clear that version 4 of the MODIS fire-

detection algorithm has a superior performance to version 3. Separate logistic

regression analysis for omission and commission errors might be helpful for further

algorithm development; building on the type of analysis started in section 4. To

analyse omission errors, only MODIS pixels including ASTER fire pixels should be

considered. Similarly, commission errors should be characterized by considering

only MODIS pixels with no ASTER fires. In this latter case, however, it may be

necessary to include additional or alternative variables in the modelling. Such

variables could include distance from the nearest fire pixel, the background

temperature, etc. These could extend model 2 of this paper to a more complete

multi-dimensional model of detection probabilities as well as a more spatial,

cartographic assessment of the errors (Wang and Howarth 1993).

In this paper, we used ASTER band 9 data to derive high-resolution fire maps

to serve as an independent measurement to analyse the characteristics and

assess the accuracy of the MODIS active fire product. We have taken advantage

of the improvement in spatial resolution of the ASTER imagery. However, the

ASTER fire maps themselves need to be further developed and their accuracy

quantified for proper and correct use as a validation reference. In addition, future

processing of many more ASTER scenes will require a more sophisticated and

automated multi-spectral ASTER fire-detection procedure. Likewise, the focus has

been only ASTER data from Southern Africa. A similar analysis, done with globally

distributed ASTER scenes, can address the global validation of the MODIS fire

product.

Having ground and/or airborne data available to ascertain additional fire

characteristics would enhance the validation process. The analysis presented here is

limited to the visual and spectral interpretation of ASTER data. It is a statistical

method to provide information on the fire-detection capabilities of MODIS as a

function of several basic fire characteristics derived from ASTER. Future work

should look to couple ASTER data with field and airborne data to consider such

factors as the fine-scale spatial/temporal attributes of the fire radiance signal,

various land cover/fire types (e.g. savannah, crop, slash-and-burn forestry), and fire

SAFARI 2000 4261



duration and temporal intensity. An analysis of fire characteristics, coupled with

information on detection capabilities from the current or similar studies, would help

in deriving regional statistics on the detectable percentage of fires.

Within the framework of the Global Observation of Forest/Land Cover

Dynamics (GOFC/GOLD), the fire implementation team is focusing on using

regional networks and partners to help test and validate satellite-based fire detection

products within their region (Morisette et al. 2001). These networks and partner-

ships can supplement the provision of local expertise and data to help establish

the accuracy and reliability of both the ASTER and MODIS fire products. The

Southern Africa Fire Network (SAFNET) is currently assisting in assessing the

accuracy of the MODIS fire products for this region and their utility for national-

scale fire management. Similar activities have been started in Eastern Russia.

Involving regional scientists in product validation will help develop a user

community, which understands first hand the capabilities and limitations of a given

product.

Within a joint LBA (Large-Scale Biosphere–Atmoshere Experiment in the

Amazon) Phase II project between IBAMA (Instituto Brasileiro do Meio Ambiente

e dos Recursos Naturais Renováveis), NASA and the University of Maryland,

validation campaigns are under way in Brazil using airborne high-resolution

imagery and ground measurements to characterize ASTER fire-mapping capabil-

ities. The added value of data acquired using ‘low-2’ SWIR gain, which saturate at

much higher radiances, will also be studied. This might allow analysis of fire

temperatures from ASTER and their influence on the MODIS fire product.

The validation methods presented in this paper should be applicable to any

coincident (or near-coincident) high- and medium-resolution fire observations. This

study focuses exclusively on the fire product derived from the MODIS/Terra sensor.

Unfortunately, as there is no ASTER instrument on the Aqua platform, the direct

validation of MODIS fire products as presented in this paper is not possible for

MODIS-derived fire products from the Aqua satellite.

The research presented in this paper reflects the current emphasis that NASA and

the MODIS Science Team are placing on product validation (Morisette et al. 2002).

MODIS has developed a number of improved and new global products (Justice

et al. 2002b). To quantify the improvement over heritage products and to guide the

user community on appropriate use, it is critical to determine the accuracy of the

MODIS products. The differences between results for the version 3 and version 4

algorithm show the necessity for validation efforts coinciding with the modification

of product algorithms.

With the number of moderate resolution systems currently in orbit and planned

for the next decade generating geophysical products, it is a requisite for data

producers to include statements concerning the accuracy of their products

(Townshend and Justice 2002). However, the methods and protocols for generating

and reporting product accuracy is an area for research and development. To help

develop the standards and protocols for product validation, a joint international

initiative of the Committee on Earth Observations Satellites (CEOS) Land Product

Validation Working Subgroup and the GOFC/GOLD programmes has been

established on satellite-product validation (Justice et al. 2000). We hope this paper

can contribute to the continued development of a quantitative protocol for fire-

product validation by providing a statistical modelling approach for comparing

multiple-resolution fire products.
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